USN

Sixth Semester B.E. Degree Examination, Dec.2015/Jan.2016 Analog and Mixed Mode VLSI Design

Time: 3 hrs. Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. Explain the different errors associated with an sample and hold circuit.

(05 Marks)

b. Describe the terms INL and DNL for a DAC.

(05 Marks)

c. Discuss the mixed signal layout strategy.

(05 Marks)

- d. A S/H circuit having the aperture uncertainty of 0.5 ns is used to sample a sinusoidal signal $v(t) = 2\sin 200 \times 10^3 \pi t$. Find
 - i) Maximum sampling error.
 - ii) Maximum resolution of an ADC which uses the above S/H circuit, while maintaining a sampling error less than $\frac{1}{2}$ LSB. Assume $V_{ref} = 5V$. (05 Marks)
- 2 a. With a neat circuit diagram explain R-2R ladder DAC architecture. (06 Marks)
 - b. Design a 3 bit resistor-string ladder using a binary switch array. Assume that V_{ref} = 5 V and maximum power dissipation of the converter is 5 mw. Determine the value of analog voltage for each of the possible digital input codes.
 (08 Marks)
 - c. Discuss the advantages and disadvantages of using a dual slope versus a single slope ADC architecture.

 (06 Marks)
- 3 a. With a block diagram of the successive approximation ADC explain the successive approximation algorithm.

 (08 Marks)
 - b. Design a 3 bit charge scaling DAC and find the value of the output voltage for $D_2D_1D_0=010$ and 101. Assume $V_{ref}=5$ V and C=0.5 PF. (06 Marks)
 - With a block diagram describe pipeline ADC.

(06 Marks)

- a. Design a 3 bit current steering DAC using the generic current steering. Assume each current source I is of 5 μA find the total output current for each input code. (06 Marks)
 - b. Draw the CMOS analog multiplier and explain working.

(08 Marks)

c. With a neat circuit diagram explain preamplification stage of comparator.

(06 Marks)

PART - B

5 a. Explain the terms SNR and Interpolation.

(05 Marks)

- b. Write the time domain representation of $\frac{fs}{4}$ digital resonator and hence sketch its block level circuit diagram. (05 Marks)
- c. With a neat block diagram, explain the accumulate and dump circuit used for decimation and averaging. Obtain the transfer function of the same. (10 Marks)
- 6 a. Explain Floating MOS capacitor and metal capacitors.

(10 Marks)

b. With a neat sketches explain the typical CMOS process flow. Illustrate the differences between submicron process and other process flows.
 (10 Marks)

06EC63

- 7 a. Explain the working of simple delay element using clocked CMOS logic. (06 Marks)
 - b. With a neat circuit diagram, explain the working of full adder bit implemented using dynamic logic and verify the operation of element as a 1 bit adder. (08 Marks)
 - c. Explain the working of synchronous up/down counter using an adder. (06 Marks)
- 8 a. With a circuit diagram, explain how common mode noise is eliminated to balance the output of an op-amp. (06 Marks)
 - b. Explain how a floating current source can be used to set the bias current of a push pull output stage. (08 Marks)
 - c. Explain how the addition of amplifiers to op-amp boost the gain and help slew rate.

(06 Marks)